Membrane Gas Separation



Download 4,39 Mb.
Pdf ko'rish
bet233/233
Sana13.04.2022
Hajmi4,39 Mb.
#549133
1   ...   225   226   227   228   229   230   231   232   233
Bog'liq
206. Membrane Gas Separation

Document Outline

  • Membrane Gas Separation
    • Contents
    • Preface
    • Contributors
    • Part I: Novel Membrane Materials and Transport in Them
      • 1: Synthesis and Gas Permeability of Hyperbranched and Cross-linked Polyimide Membranes
        • 1.1 Introduction
        • 1.2 Molecular Designs for Membranes
        • 1.3 Synthesis of Hyperbranched Polyimides
          • 1.3.1 Amorphous Cross-linked Polyimides (Type II)
          • 1.3.2 Hyperbranched Polyimides (Type III)
        • 1.4 Gas Permeation Properties
          • 1.4.1 Amorphous Cross-linked Polyimides (Type II)
          • 1.4.2 Hyperbranched Polyimides (Type III)
          • 1.4.3 Selectivity and Permeability
        • 1.5 Concluding Remarks
        • References
      • 2: Gas Permeation Parameters and Other Physicochemical Properties of a Polymer of Intrinsic Microporosity (PIM-1)
        • 2.1 Introduction
        • 2.2 The PIM Concept
        • 2.3 Gas Adsorption
        • 2.4 Gas Permeation
        • 2.5 Inverse Gas Chromatography
        • 2.6 Positron Annihilation Lifetime Spectroscopy
        • 2.7 Conclusions
        • Acknowledgements
        • References
      • 3: Addition-type Polynorbornene with Si(CH3)3 Side Groups: Detailed Study of Gas Permeation, Free Volume and Thermodynamic Properties
        • 3.1 Introduction
        • 3.2 Experimental
        • 3.3 Results and Discussion
          • 3.3.1 Physical Properties
          • 3.3.2 Gas Permeability
          • 3.3.3 Sorption and Diffusion
          • 3.3.4 Free Volume
        • 3.4 Conclusions
        • References
      • 4: Amorphous Glassy Perfluoropolymer Membranes of Hyflon AD®: Free Volume Distribution by Photochromic Probing and Vapour Transport Properties
        • 4.1 Introduction and Scope
          • 4.1.1 Free Volume and Free Volume Probing Methods for Polymers
          • 4.1.2 Details of the Photochromic Probe Method
          • 4.1.3 Relevance of Free Volume for Mass Transport Properties
        • 4.2 Membrane Preparation
          • 4.2.1 Materials
          • 4.2.2 Procedures
          • 4.2.3 Membrane Properties
        • 4.3 Free Volume Analysis
          • 4.3.1 Photoisomerization Procedures and UV-Visible Characterization
          • 4.3.2 Probes and Spectrophotometric Analysis
          • 4.3.3 Free Volume Distribution
        • 4.4 Molecular Dynamics Simulations
        • 4.5 Transport Properties
          • 4.5.1 Permeation Measurements
          • 4.5.2 Data Elaboration: Determination of the Time Lag and Steady State Permeability
          • 4.5.3 Vapour Permeation Measurements
        • 4.6 Correlation of Transport and Free Volume
        • 4.7 Conclusions
        • References
      • 5: Modelling Gas Separation in Porous Membranes
        • 5.1 Introduction
        • 5.2 Background
        • 5.3 Surface Diffusion
        • 5.4 Knudsen Diffusion
        • 5.5 Membranes: Porous Structures?
        • 5.6 Transition State Theory (TST)
        • 5.7 Transport Models for Ordered Pore Networks
          • 5.7.1 Parallel Transport Model
          • 5.7.2 Resistance in Series Transport Model
        • 5.8 Pore Size, Shape and Composition
        • 5.9 The New Model
          • 5.9.1 Enhanced Separation by Tailoring Pore Size
          • 5.9.2 Determining Diffusion Regime from Experimental Flux
          • 5.9.3 Predictions of Gas Separation
        • 5.10 Conclusion
        • List of symbols
        • References
    • Part II: Nanocomposite (Mixed Matrix) Membranes
      • 6: Glassy Perfluorolymer–Zeolite Hybrid Membranes for Gas Separations
        • 6.1 Introduction
        • 6.2 Materials and Methods
        • 6.3 Results and Discussion
        • 6.4 Conclusions
        • Acknowledgements
        • References
      • 7: Vapor Sorption and Diffusion in Mixed Matrices Based on Teflon® AF 2400
        • 7.1 Introduction
        • 7.2 Theoretical Background
          • 7.2.1 NELF Model
          • 7.2.2 Modelling Gas Solubility Into Mixed Matrix Glassy Membranes
          • 7.2.3 Modelling Gas Diffusivity and Permeability in Mixed Matrix Glassy Membranes
        • 7.3 Experimental
          • 7.3.1 Materials
          • 7.3.2 Vapour Sorption
        • 7.4 Results and Discussion
          • 7.4.1 Vapour Sorption in Mixed Matrices Based on AF 2400
          • 7.4.2 Diffusivity
          • 7.4.3 Correlations for Diffusivity
          • 7.4.4 Permeability and Selectivity
        • 7.5 Conclusions
        • Acknowledgements
        • References
      • 8: Physical and Gas Transport Properties of Hyperbranched Polyimide–Silica Hybrid Membranes
        • 8.1 Introduction
        • 8.2 Experimental
          • 8.2.1 Materials
          • 8.2.2 Polymerization
          • 8.2.3 Membrane Formation
          • 8.2.4 Measurements
        • 8.3 Results and Discussion
          • 8.3.1 Polymer Characterization
          • 8.3.2 Gas Transport Properties of HBPI–Silica Hybrid Membranes
          • 8.3.3 O2/N2 and CO2/CH4 Selectivities of HBPI–Silica Hybrid Membranes
        • 8.4 Conclusions
        • References
      • 9: Air Enrichment by Polymeric Magnetic Membranes
        • 9.1 Introduction
        • 9.2 Formulation of the Problem
          • 9.2.1 One-component Permeation Process – Fick’s and Smoluchowski Equation
          • 9.2.2 Diffusion Equation for Two-component Gas Mixture (Without and With a Potential Field)
        • 9.3 Experimental
          • 9.3.1 Membrane Preparation
          • 9.3.2 Experimental Setup
          • 9.3.3 Time Lag Method and D1-D8 System
          • 9.3.4 Permeation Data
        • 9.4 Results and Discussion
        • 9.5 Conclusions
        • Acknowledgements
        • List of Symbols
        • References
    • Part III: Membrane Separation of CO2 from Gas Streams
      • 10: Ionic Liquid Membranes for Carbon Dioxide Separation
        • 10.1 Introduction
        • 10.2 Experimental
        • 10.3 Results
        • 10.4 Discussion
        • 10.5 Conclusions
        • References
      • 11: The Effects of Minor Components on the Gas Separation Performance of Polymeric Membranes for Carbon Capture
        • 11.1 Introduction
        • 11.2 Sorption Theory for Multiple Gas Components
          • 11.2.1 Rubbery Polymeric Membranes
          • 11.2.2 Glassy Membranes
        • 11.3 Minor Components
          • 11.3.1 Sulfur Oxides
          • 11.3.2 Nitric Oxides
          • 11.3.3 Hydrogen Sulfide
          • 11.3.4 Carbon Monoxide
          • 11.3.5 Water
          • 11.3.6 Hydrocarbons
        • 11.4 Conclusions
        • References
      • 12: Tailoring Polymeric Membrane Based on Segmented Block Copolymers for CO2 Separation
        • 12.1 Introduction
        • 12.2 Tailoring Block Copolymers with Superior Performance
        • 12.3 Block Copolymers and their Blends with Polyethylene Glycol
        • 12.4 Composite Membranes
        • 12.5 Conclusions and Future Aspects
        • References
      • 13: CO2 Permeation with Pebax®-based Membranes for Global Warming Reduction
        • 13.1 Introduction
        • 13.2 Experimental
          • 13.2.1 Chemicals
          • 13.2.2 Membranes
          • 13.2.3 Gas Permeability Measurements
          • 13.2.4 Gas Sorption Measurements
          • 13.2.5 Thermal Behaviour Studies by DSC (Differential Scanning Calorimetry)
          • 13.2.6 AFM Surface Imaging
          • 13.2.7 Surface Modification of Pebax® Membrane by Cold Plasma
        • 13.3 Results and Discussions
          • 13.3.1 Sorption and Permeation of CO2 and N2 in Extruded Pebax® Films
          • 13.3.2 Pebax® 1657-based Blend Membrane: Structure and Properties
          • 13.3.3 Pebax® 1657 Membrane Modified by Cold Plasma
        • 13.4 Conclusions
        • References
    • Part IV: Applied Aspects of Membrane Gas Separation
      • 14: Membrane Engineering: Progress and Potentialities in Gas Separations
        • 14.1 Introduction
        • 14.2 Materials and Membranes Employed in GS
          • 14.2.1 Membrane Modules
        • 14.3 Membranes Applications in GS
          • 14.3.1 Current Applications of Membranes in GS
          • 14.3.2 Hydrogen Recovery
          • 14.3.3 Air Separation
          • 14.3.4 Natural Gas Treatment
          • 14.3.5 CO2 Capture
          • 14.3.6 Vapour/Gas Separation
        • 14.4 New Metrics for Gas Separation Applications
          • 14.4.1 Case Study: Hydrogen Separation in Refineries
        • References
      • 15: Evolution of Natural Gas Treatment with Membrane Systems
        • 15.1 Introduction
        • 15.2 Market for Natural Gas Treatment
        • 15.3 Amine Treaters
        • 15.4 Contaminants and Membrane Performance
        • 15.5 Cellulose Acetate versus Polyimide
        • 15.6 Compaction in Gas Separations
        • 15.7 Experimental
        • 15.8 Laboratory Tests of Cellulose Acetate Membranes
        • 15.9 Field Trials of Cellulose Acetate Membranes
        • 15.10 Strategies for Reduced Size of Large-scale Membrane Systems
        • 15.11 Research Directions
        • 15.12 Summary
        • Acknowledgements
        • References
      • 16: The Effect of Sweep Uniformity on Gas Dehydration Module Performance
        • 16.1 Introduction
        • 16.2 Theory
          • 16.2.1 Gaussian Distribution of Sweep
          • 16.2.2 Explicit Sweep Distribution Simulations
        • 16.3 Results and Discussion
          • 16.3.1 Module Performance with Ideal Sweep Distribution
          • 16.3.2 Effect of Sweep and ID Variation
          • 16.3.3 Effect of Sweep Distribution
          • 16.3.4 Effect of Fibre Packing Variation Along Case
        • 16.4 Conclusion
        • List of Symbols
        • References
    • Index

Download 4,39 Mb.

Do'stlaringiz bilan baham:
1   ...   225   226   227   228   229   230   231   232   233




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©www.hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish