3. 3E: Runge-Kutta Usuli (Mashqlar) Matematika



Download 72,08 Kb.
bet14/15
Sana19.03.2022
Hajmi72,08 Kb.
#501496
1   ...   7   8   9   10   11   12   13   14   15
Exercise 16
As humans we sometimes take for granted that time can only move forwards, but when we’re working with differential equations time can move both ways. We’ll explore this in this problem, where we put the “backwards” in “backwards Euler method”.
Consider the differential equation [t y' - y = t^4 - 3 ,,] with “terminal condition” (y(1) = 0) . Use the implicit Euler method [y_n = y_ - hf(t_, y_)] with step size (h = frac<1><2>) to estimate (y(0)) .
Solve the initial value problem and determine what value of (y(0)) would lead to a solution which has a root at (t=1) . [Do you even need the specific solution to determine (y(0)) ? Is something weird going on here?]
Check that upping the number of steps from two to four improves the accuracy of the approximation.
Qaror
We have (f(t,y) = frac). We treat (t=1) , (y=0) as the end conditions (i.e., (t_2 = 1) , (y_2 = 0) ) and we’ll compute (y_1) to go with (t_1 = frac<1><2>) and (y_0) to go with (t_0 = 0) . The nice thing about using backward Euler is that when time is reversed the method is explicit! We’re told just how to calculate (y_) from (y_). Doing so, we get (f(t_2, y_2) = -2) , so (y_1 = 1) , and then (f(t_1, y_1) = -3.875) , so (y_0 = 2.9375) . Our estimate is around two and a half.
In normal form the equation is (y'-frac<1>,y = t^3 - frac<3>). The proper integrating factor is (mu(t) = frac<1>) , so we get (y(t) = frac <3>+ 3 + ct) . At this point we can stop: whatever (c) is, the solution is going to have (y(0) = 3) . This looks like a gross failure of uniqueness when (t=0) , and indeed there is such a failure because the coefficients are not continuous at (t=0) .
The algorithm produces the following table I’ll put the numbers in the order we get the numbers, rather than in order of increasing time. [oshlanishi t & 1 & 0.75 & 0.5 & 0.25 & 0 hline y & 0 & 0.5 & 1.2278 & 2.0827 & 2.9961 end] We get much closer to the (3) we were expecting.
Exercise 17
Let (y(t)) be the solution to the differential equation (y' - 3y = t^2) with (y(1) = 1) . Use the explicit Euler method with a step size of (frac<1><2>) to estimate (y(0)) . Was this easier or harder than the previous problem?
Qaror
This is going to be harder because the so-called explicit Euler method is implicit when working in reverse. The method says [y_ = y_n + h f(t_n, y_n) ,,] but the thing that we want is (y_n) . So we’ll have to solve this for (y_n) so that we can get “past” information from the “future” data. The function is (f(t,y) = t^2 + 3y) , and our step size is (h = frac<1><2>) . So we need to rearrange [y_ = y_n + frac<1> <2>left( t_n^2 + 3y_n ight) ,,] and doing so gives us [y_n = frac <5>+ frac<2y_> <5>,.] Now we plug in (t_n = 0.5) , (y_ = 1) , then in the next iteration we plug in (t_n = 0) and (y_ = ext). Doing so, the method tells us (y(0.5) approx 0.45) and (y(0) approx 0.18) .
Exercise 18
You’ve estimated the error of a fourth order method on an interval ([0,10]) with (20) time steps. If you increase to (60) time steps, by what factor will the error go down?

Download 72,08 Kb.

Do'stlaringiz bilan baham:
1   ...   7   8   9   10   11   12   13   14   15




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©www.hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish