1. Адабиётлар шархи
Структура, классификация, физико-химические свойства флавоноидов
Флавоноидами называется группа природных фенольных соединений – производных бензо-γ-пирона, в основе которых лежит скелет, состоящий из двух бензольных колец (А и В), соединенных между собой трехуглеродной цепочкой (пропановый скелет), т.е. состоящий из С6-С3-С6 углеродных единиц. Это гетероциклические соединения с атомом кислорода в кольце [1].
γ -пирон бензо-γ-пирон (хромон) флавон(2-фенилхромон)
При замещении в хромоне атома водорода в α-положении на фенильную группу образуется 2-фенил-(α)-бензо-γ-пирон или флавон, который состоит из двух ароматических остатков А и B и трехуглеродного звена (пропановый скелет). При участии пропанового мостика в большинстве флавоноидов образуется гетероцикл – производное пирана или γ-пирона.
Под термином флавоноиды объединены различные соединения, генетически связанные друг с другом, но обладающие различным фармакологическим действием.
Свое название они получили от латинского слова flavus – желтый, так как первые выделенные из растений флавоноиды имели желтую окраску, (позднее установлено, что многие из них бесцветны) [2].
В зависимости от степени окисления и гидроксилирования пропанового скелета С6-С3-С6 и положения фенильного радикала флавоноиды делятся на несколько групп [3].
Флавоны – бесцветные или слегка желтого цвета, их гидроксилированные формы находятся в цветках пижмы, ромашки (флавон апигенин). Фенильная группа расположена во 2-м положении.
Изофлавоны (корни стальника полевого). Фенильная группа находится в 3-м положении.
Флавонолы – бледно-желтого цвета. Отличаются от флавонов наличием группы ОН в 3-м положении.
С увеличением количества гидроксильных групп и в зависимости от их положения возрастает густота окраски. Чаще встречаются соединения с 4-5 гидроксильными группами, например кверцетин – 3,5,7,3',4'-пентагидрооксифлавонол.
Большое значение имеет для медицины гликозид рутин – 5,7,3',4'-тетрагидрооксифлавонол.
Рутин содержится в гречихе, горцах (перечном, почечуйном, спорыше). Встречаются соединения с семью гидроксильными группами. Метилирование гидроксилов еще больше увеличивает разнообразие оттенков.
Флавононы (гидрированное производное флавона) в отличие от флавона не имеют двойной связи между углеродами во 2-м и 3-м положениях. Представителями являются гесперетин (находится в виде гликозида в плодах цитрусовых – лимонах), гликозид ликвиритин (находится в корне солодки и придает ей желтый цвет).
Флавононолы отличаются от флавонола отсутствием двойной связи между углеродами во 2-м и 3-м положениях. ОН-группа, как и у флавонола, находится в 3-м положении. Скелет флавонола составляет гликозид аромадендрин, содержащийся в листьях эвкалипта.
К флавоноидам относятся производные халкона, катехины, антоцианидины, ауроны. Катехины относятся к полифенолам, входят в состав конденсированных дубильных веществ. Катехины представляют собой наиболее восстановленные флавоноидные соединения. Многие красные и синие окраски цветков с различными оттенками обусловлены присутствием антоцианидинов. В зависимости от рН среды окраска цветков меняется. В кислотной среде они образуют розовую, красную окраску, в щелочной среде – от голубой до синей с разными оттенками. Ауроны имеют разнообразную структуру. Они встречаются в растениях семейства астровых. В растениях присутствуют в форме гликозидов [4].
Физические свойства. Катехины, лейкоантоцианидины, флаванонолы, изофлавоны – бесцветные; флаваноны, флавоны, флавонолы – желтые; халконы и ауроны – оранжевые; антоцианидины в зависимости от реакции среды красные, синие или фиолетовые аморфные или кристаллические вещества, без запаха, горького вкуса, с определенной температурой плавления (гликозиды – 100-180 ºС, агликоны – до 300 ºС).
Гликозилированные формы флавоноидов, катехины и лейкоантоцианидины хорошо растворимы в воде, этаноле и метаноле различной концентрации, нерастворимы в органических растворителях (диэтиловом эфире, хлороформе, ацетоне). Свободные агликоны, за исключением катехинов и лейкоантоцианидинов, нерастворимы в воде, но хорошо растворимы в этаноле, метаноле и других органических растворителях (диэтиловом эфире, хлороформе, ацетоне).
Все флавоноиды хорошо растворимы в пиридине, диметилформамиде и щелочах. Все флавоноиды оптически активны, способны флуоресцировать в УФ-свете, имеют характерные УФ-спектры, характеризующиеся наличием двух максимумов поглощения, и ИК-спектры.
Химические свойства обусловлены особенностью строения флавоноидов: наличием ароматических, пиранового или пиронового колец, функциональных групп.
1. Гликозиды подвергаются ферментативному и кислотному гидролизу до агликонов и сахаров. O-гликозиды гидролизуются более или менее легко при действии разбавленных минеральных кислот и ферментов. С-гликозиды с трудом расщепляются только в жестких условиях при действии крепких кислот (кислоты концентрированные хлористоводородная или уксусная) или их смесей (смесь Килиани) при длительном нагревании.
2. Благодаря кольцам А и В флавоноиды способны образовывать комплексные соединения с солями металлов (железа, алюминия, циркония), вступать в реакцию азосочетания с солями диазония с образованием азокрасителей.
3. Флавоноиды, содержащие пироновый цикл (флавоны и флавонолы), способны восстанавливаться в кислой среде атомарным (свободным) водородом, полученным в результате реакции взаимодействия кислоты с металлическим магнием или цинком, до антоцианидинов (проба Шинода, или цианидиновая проба); растворяться в щелочах с образованием растворимых в воде фенолятов.
4. Флавоноиды, содержащие пирановый цикл (катехины, лейкоантоцианидины), способны легко окисляться до производных флавона и флавонола.
5. Флавоноиды при сплавлении в жестких условиях со щелочью распадаются на составные части, что используется для установления их структуры.
Физические и химические свойства флавоноидов используются в анализе сырья на подлинность и доброкачественность [5].
Do'stlaringiz bilan baham: |