Precise asymptotics in some strong limit theorems for multidimensionally indexed random variables


Proof. Since k>c(ε) implies  , it follows that Lemma 2.4



Download 0,84 Mb.
bet5/10
Sana18.07.2022
Hajmi0,84 Mb.
#822655
1   2   3   4   5   6   7   8   9   10
Bog'liq
ГУТ АЛЛАН ГАФУРОВ ИШЛАРИ(1)

Proof. Since k>c(ε) implies  , it follows that

Lemma 2.4. Letθ>0, and let h be a positivereal valued functionsuch thatFor anyC>0,

Proof. The result follows by the dominated convergence, since

The following lemma follows immediately from Spătaru [28, Lemma 2].
Lemma 2.5. For 1<β⩽2 andx,y>0,

Next, some purely computational auxiliary results.
Lemma 2.6. Forδ⩾−d+1 we have

Proof. We consider only the case δ⩾0; the case −d+1⩽δ<0 being similar is left to the reader. For k>2 we have
equation(2.5)

and for 2∨eδj<k we have
equation(2.6)

Combining (2.5) and (2.6), we obtain
equation(2.7)

Since   as k→∞ for a>−1, we have

The right-hand inequality of (2.7) provides the same asymptotics, and we are done. □
Lemma 2.7. Forγ>−1 we haveask→∞,

Proof. For k>1 we have  . Next we observe that   lies between M(k)kγγi=1k−1M(i)iγ−1 and M(k)kγγi=1k−1M(i)(i+1)γ−1, since jγkγlies between   and −γi=jk−1(i+1)γ−1. In view of the fact that   as k→∞, we therefore obtain

The bound   provides the same asymptotics as k→∞. □

3. Proof of Theorem 1


Recall that G is the distribution function of a nondegenerate stable distribution with characteristic exponent α, 1<α⩽2, and Ψ(x)=1−G(x)+G(−x), x⩾0.

3.1. F=G


Lemma 3.1. Ford⩾2 andC>0,

Proof. Partial integration and Lemma 2.4 with h(y)=−Ψ′(y), yield

Proposition 3.1. For 1⩽p<α⩽2,

Proof. Let 0<δ<1. By making use of Lemma 2.6, choose k0 such that
equation(3.1)

Moreover, assume that the function   is decreasing for xk0−1. Then, as G is also the distribution function of  ,
which, together with Lemma 3.1, yields
equation(3.2)

Analogously, we have
equation(3.3)

Since δ is at our disposal, (3.2) and (3.3) together finish the proof. □

3.2. F is attracted to a stable distribution


In this case bn takes the form bn=n1/αhn, where {hn} is slowly varying in the sense of Karamata. Let β and b(ε) be as in Lemma 2.1. Also recall that Ψ(x)=1−G(x)+G(−x), x⩾0.
Proposition 3.2.

Proof. The conclusion follows from the fact that

which, in view of Lemma 2.6 with δ=0, shows that

and, hence, that

Proposition 3.3.

Proof. Noting that Ψ(x)⩽Cxα for x>0, that bjCj1/α+γ/2 for any γ>0 due to the slow variation of {hn}, it follows that

Next, in view of (2.2), we have d(j)⩽Cjαγ/2 for any γ>0, and so, by choosing γ<(αβ)/αβ, the conclusion follows via

Proposition 3.4.

Proof. Specializing Lemma 2.5 at x=εj1/p and y=εj1/p/β yields

An application of Lemma 2.1 to the first term in the right-hand side above, and the fact that
equation(3.4)

for η>0 and k⩾1, applied to the second one, shows that

The conclusion follows. □

4. Proof of Theorem 2


As in the previous section, G is the distribution function of a nondegenerate stable distribution with characteristic exponent α, 1<α⩽2. Moreover, Z is a random variable with this distribution, that is, we can writeΨ(x)=P(|Z|>x), x⩾0.

4.1. F=G


Lemma 4.1. Ford⩾2 and 0<γ<α,

Proof. Immediate from Lemma 2.4 with h(y)=yγ−1Ψ(y). □
Proposition 4.1. For 1⩽p<r<α,

Proof. Let 0<δ<1. By making use of Lemma 2.7 with γ=r/p−2, choose k0 such that

and also so that the function   is decreasing for xk0−1. Following the path of the proof of Proposition 3.1 we now obtain

An application of Lemma 4.1 with   now yields

which together with an analogous lower bound for the   (cf. (3.3)) and the arbitrariness of δcompletes the proof. □

4.2. F is in the normal domain of attraction to a stable law


Now the normalizing constants are bj=Cj1/αj⩾1. Put a(ε)=εαp/(αp).
Proposition 4.2.

Proof. Let M be a positive number, and set   asj→∞. Following the proof of Proposition 3.2, with jr/p−2 replacing 1/j and a(ε)M replacing b(ε), we first conclude, via Lemma 2.7 with γ=r/p−2, that

Letting ε↘0, we then obtain
equation(4.1)

Next, we observe that the moments of order <α of the normalized partial sums are uniformly bounded by Lemma 5.2.2 in [16, p. 142], which, together with Markov's inequality (see also [26, p. 163]), shows that, for all x≠0 and η<α,

With η=r and bj=Cj1/α, we therefore conclude, via (3.4), that

and, hence, that
equation(4.2)

Finally, (4.1) and (4.2) together yield the desired conclusion. □

5. Proof of Theorem 3

5.1. F is normal


We thus assume w.l.o.g. that σ2=1. Also, N is a standard normal random variable, F its distribution functionΦ, and Ψ(x)=1−Φ(x)+Φ(−x)=P(|N|>x), x⩾0, in this subsection.
Lemma 5.1. Ford⩾2 andγ>0,

Proof. Immediate from Lemma 2.4 with h(y)=yγ−1Ψ(y). □
Proposition 5.1. Forr⩾2 and 1⩽p<2,

Proof. For r/p<2 the conclusion follows as in Proposition 4.1 with α replaced by 2 and Z by N. Therefore, letr⩾2p. By Lemma 2.7 with γ=r/p−2, choose k0 such that, for 0<δ<1,

Moreover, assume that   forjk0. Following the proof of Proposition 4.1 we now obtain

which, in view of Lemma 5.1 with  , yields

The conclusion follows as above. □

5.2. The general case


We thus consider i.i.d. random variables with mean 0, variance 1, under the moment assumption thatE[|X|r(log(1+|X|))d−1]<∞. Also, recall that ρ(ε)=ε−2p/(2−p). The proof of the next proposition follows closely the pattern of the proof of the first part of Proposition 4.2, and is therefore omitted.
Proposition 5.2.

Proposition 5.3.

Proof. This is a special case of the next result. □
Proposition 5.4.

Proof. Let M>1. Lemma 2.5 with x=εj1/py=εj1/p/γ with γ=r/(2−p), and β=2, together with an application ofLemma 2.2 and (3.4), yields

The conclusion follows, in view of the fact that  . □

6. Proof of Theorem 4

6.1. F is normal


We use the notation and assumptions from Section 5.1. Also, 0⩽δ⩽1.
Proposition 6.1.

Proof. Let 0<η<1. By making use of Lemma 2.6, choose k0 such that

and also such that   is decreasing for xk0−1. Then

This establishes the upper bound for the  . The lower bound for the   follows as before. □

6.2. The general case


We thus consider i.i.d. random variables with mean 0 and variance 1. Also, recall that c(ε)=eM/ε2, where M>1.
Proposition 6.2.

Proof. Let   as j→∞. Following the pattern of the previous proofs, it follows, via Lemma 2.6, that

Proposition 6.3.

Proof. Immediate from the next result. □
Proposition 6.4.

Proof. Lemma 2.5 with  ,  , and β=2, Lemma 2.3 and the fact that

yield

7. Proof of Theorem 5

7.1. F is normal


We thus assume w.l.o.g. that σ2=1. Also, F is the standard normal distribution function Φ, andΨ(x)=1−Φ(x)+Φ(−x), x⩾0 in this subsection.
Proposition 7.1.

Proof. Let 0<η<1. By making use of Lemma 2.6 with δ=−1, choose k0⩾3 such that

Moreover, assume that   is decreasing for xk0−1, and set  . Then

via partial integration. The proof is concluded the usual way. □

7.2. The general case


Thus X,X1,X2,… are i.i.d. random variables with mean 0 and variance 1.
Proposition 7.2. Suppose that for someδ>1.Then

Proof. Choose A so large that   is increasing for xA, and define

By Theorem 5.6 in [26, p. 151], for jA2, we then have

which, since

shows that

8. Some further results and remarks

8.1. Some corollaries


Even though it is not true that   as j→∞, a substantial part of the proofs is devoted to “replacing” d(j) by   in Lemma 2.1, Lemma 2.2 and Lemma 2.3, and by   in Propositions 1 of 3, 4, 5, 6 and 7. With this in mind, an investigation of the proofs shows that, by replacing d(j) by (logj)θ in Lemma 2.1, Lemma 2.2 and Lemma 2.3, where θ is a positive real number, we obtain variations of those lemmas which therefore are much easier to prove. As an illustration we state one of them; the analog of Lemma 2.1.
Lemma 8.1. Suppose thatE[|X|β(log(1+|X|))d−1<∞ and setb(ε)=εβp/(βp)where 1⩽p<β<αFor any constanta>0,

Secondlyby replacingd(j) by  in the propositions (thuswithout the factorial ), we obtain analogous modificationswhichagainare more easily established.
Thus, let X and   be i.i.d. random variables with mean 0 and partial sums  . The following corollaries emerge.
Corollary 1. Let 1⩽p<α⩽2. Suppose that F belongs to the domain of attraction of a nondegenerate stable distribution G with characteristic exponentαThen

Corollary 2. Let 1⩽p<r<α⩽2. Suppose that F belongs to the normal domain of attraction of a nondegenerate stable distribution G with characteristic exponentαand let Z have distribution G. Then

Corollary 3. Suppose thatr⩾2, setEX2=σ2and let N denote a standard normal random variable. For 1⩽p<2,

Corollary 4. Suppose thatE[X2(log(1+|X|))θ]<∞, setEX2=σ2and let N denote a standard normal random variable. For 0⩽δ⩽1,

Corollary 5. Suppose that for someδ>1, and setEX2=σ2Then


Download 0,84 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©www.hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish